A level Maths

These tasks are very much designed to reinforce topics that you have seen at GCSE and will form part of your everyday skill-set in A level Maths.

If you get stuck, please email Mr Yeomans

tim.yeomans@northoxfordshire-academy.org

Task 1: Hand in on your 1st lesson in September (5 hours)

These preparatory worksheets have been created by Edexcel, the exam board we will be using in Maths. There are 7 sheets that will allow you to practice the topics that recur in A level Maths. They are the areas I would expect you to be able to recall straight away.

On each sheet there are examples to help you, practice questions and extensions.

The sheets cover:

- 1) Completing the square
- 2) Quadratic inequalities
- 3) Sketching quadratic graphs
- 4) Rules of indices
- 5) Straight line graphs
- 6) Parallel and perpendicular lines
- 7) Trigonometry

Task 2: Hand in on your 1st lesson in September (10 hours)

Having mastered the topics from GCSE Maths, I would like you to apply that knowledge to the questions in this task. These questions have been taken from A level papers but require only GCSE knowledge.

Extensions

1) Learn how to use the A level calculator using this PowerPoint:

https://www.drfrostmaths.com/getfile.php?fid=1520

2) The Statistics section of A level Maths makes use of the large data set. This is a spreadsheet with a lot of information in it. I recommend opening it and familiarising yourself with the type of information contained in it. You can download it here: Large data set

Reading list

CGP A-Level Mathematics Complete Revision & Practice (Exam Board: Edexcel)

I strongly recommend getting this calculator:

Casio Classwiz fx-991EX

- It costs around £24.99 from Amazon
- You can use the bursary to buy this in September
- Statistics questions are impossible to answer without it
- It solves simultaneous equations, quadratic equations, cubic equations and so much more!

Task 1

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x+q)^2 + r$
- If $a \neq 1$, then factorise using *a* as a common factor.

Examples

$x^2 + 6x - 2$	1 Write $x^2 + bx + c$ in the form
$=(x+3)^2-9-2$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2 Simplify

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

Example 2	Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$
-----------	--

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	$a\left(x^{2} + \frac{b}{a}x\right) + c$ 2 Now complete the square by writing $x^{2} - \frac{5}{a}x$ in the form
$= 2\left[\left(x-\frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the
$= 2\left(x-\frac{5}{4}\right)^2 - \frac{17}{8}$	factor of 2 4 Simplify

Practice

1 Write the following quadratic expressions in the form $(x + p)^2 + q$

a	$x^2 + 4x + 3$	b	$x^2 - 10x - 3$
c	$x^2 - 8x$	d	$x^2 + 6x$
e	$x^2 - 2x + 7$	f	$x^2 + 3x - 2$

2 Write the following quadratic expressions in the form $p(x+q)^2 + r$ a $2x^2 - 8x - 16$ b $4x^2 - 8x - 16$ c $3x^2 + 12x - 9$ d $2x^2 + 6x - 8$

3 Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4 Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Quadratic inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions)

Key points

- First replace the inequality sign by = and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

Examples

Example 1 Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$

Example 2 Find the set of values of x which satisfy $x^2 - 5x \le 0$

$x^{2} - 5x = 0$ x(x - 5) = 0 x = 0 or x = 5	1 Solve the quadratic equation by factorising.
x = 0 or x = 5	2 Sketch the graph of $y = x(x-5)$
	3 Identify on the graph where $x^2 - 5x \le 0$, i.e. where $y \le 0$
$0 \le x \le 5$	4 Write down the values which satisfy the inequality $x^2 - 5x \le 0$

Example 3 Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

Practice

- 1 Find the set of values of x for which $(x + 7)(x 4) \le 0$
- 2 Find the set of values of x for which $x^2 4x 12 \ge 0$
- **3** Find the set of values of *x* for which $2x^2 7x + 3 < 0$
- 4 Find the set of values of x for which $4x^2 + 4x 3 > 0$
- 5 Find the set of values of x for which $12 + x x^2 \ge 0$

Extend

Find the set of values which satisfy the following inequalities.

- $\mathbf{6} \qquad x^2 + x \le \mathbf{6}$
- 7 x(2x-9) < -10
- 8 $6x^2 \ge 15 + x$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y = ax^2 + bx + c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and a shape as shown.

- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the *y*-axis substitute x = 0 into the function.
- To find where the curve intersects the *x*-axis substitute y = 0 into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y = x^2$.

Example 2 Sketch the graph of $y = x^2 - x - 6$.

When $x = 0$, $y = 0^2 - 0 - 6 = -6$ So the graph intersects the y-axis at $(0, -6)$	1 Find where the graph intersects the y-axis by substituting $x = 0$.
When $y = 0$, $x^2 - x - 6 = 0$	2 Find where the graph intersects the
(x+2)(x-3) = 0	3 Solve the equation by factorising.
x = -2 or x = 3	4 Solve $(x + 2) = 0$ and $(x - 3) = 0$.
So, the graph intersects the <i>x</i> -axis at $(-2, 0)$ and $(3, 0)$	5 $a = 1$ which is greater than zero, so the graph has the shape:
	(continued on next page)

$$x^{2} - x - 6 = \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 6$$

$$= \left(x - \frac{1}{2}\right)^{2} - \frac{25}{4}$$
When $\left(x - \frac{1}{2}\right)^{2} = 0$, $x = \frac{1}{2}$ and
 $y = -\frac{25}{4}$, so the turning point is at the
point $\left(\frac{1}{2}, -\frac{25}{4}\right)$

$$y = -\frac{25}{4}$$

$$y$$

Practice

- **1** Sketch the graph of $y = -x^2$.
- 2 Sketch each graph, labelling where the curve crosses the axes. **a** y = (x+2)(x-1) **b** y = x(x-3) **c** y = (x+1)(x+5)
- 3 Sketch each graph, labelling where the curve crosses the axes.

a	$y = x^2 - x - 6$	b	$y = x^2 - 5x + 4$	с	$y = x^2 - 4$
d	$y = x^2 + 4x$	e	$y = 9 - x^2$	f	$y = x^2 + 2x - 3$

4 Sketch the graph of $y = 2x^2 + 5x - 3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.

a $y = x^2 - 5x + 6$ **b** $y = -x^2 + 7x - 12$ **c** $y = -x^2 + 4x$

6 Sketch the graph of $y = x^2 + 2x + 1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$ $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$. •

Examples

Example 1 Evaluate 10⁰

equal to 1	$10^0 = 1$	Any value raised to the power of zero is equal to 1
------------	------------	---

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}} = \sqrt{9}$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
= 3	

Example 3 Evaluate $27^{\frac{2}{3}}$

$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$	1 Use the rule $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Example 4	Evaluate 4^{-2}	
	$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$ 2 Use $4^2 = 16$
Example 5	Simplify $\frac{6x^5}{2x^2}$	
	$\frac{6x^5}{2x^2} = 3x^3$	$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to give $\frac{x^5}{x^2} = x^{5-2} = x^3$
Example 6	Simplify $\frac{x^3 \times x^5}{x^4}$	
	$\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$	1 Use the rule $a^m \times a^n = a^{m+n}$
	$= x^{8-4} = x^4$	2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$
Example 7	Write $\frac{1}{3x}$ as a single power of x	
	$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
		fraction $\frac{1}{3}$ remains unchanged
Example 8	Write $\frac{4}{\sqrt{x}}$ as a single power of x	
	$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
	$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

Practice

1	Eva	aluate.						
	a	14 ⁰	b	3 ⁰	C	5 ⁰	d	<i>x</i> ⁰
2	Eva	aluate.						
	a	$49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	с	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3	Eva	aluate.						
	a	$25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4	Eva	aluate.						
	a	5 ⁻²	b	4 ⁻³	c	2 ⁻⁵	d	6 ⁻²
5	Sin	nplify.						
	a	$\frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$				
	c	$\frac{3x \times 2x^3}{2x^3}$	d	$\frac{7x^3y^2}{14x^5y}$		Watch out!		
	e	$\frac{y^2}{y^{\frac{1}{2}} \times y}$	f	$\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$		Remember that any value raise the power of z	at ed to zero	
	g	$\frac{\left(2x^2\right)^3}{4x^0}$	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^3}$		rule $a^0 = 1$.	e 	
6	Eva	aluate.						
	a	$4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$	c	$9^{-\frac{1}{2}} \times 2^{3}$		
	d	$16^{\frac{1}{4}} \times 2^{-3}$	e	$\left(\frac{9}{16}\right)^{-\frac{1}{2}}$	f	$\left(\frac{27}{64}\right)^{-\frac{2}{3}}$		
7	Wr	ite the following as a s	single p	power of <i>x</i> .				
	a	$\frac{1}{x}$	b	$\frac{1}{x^7}$	c	$\sqrt[4]{x}$		
	d	$\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt[3]{x}}$	f	$\frac{1}{\sqrt[3]{x^2}}$		

8 Write the following without negative or fractional powers.

		8		
a	x^{-3}	b x^0	с	$x^{\frac{1}{5}}$
d	$x^{\frac{2}{5}}$	e $x^{-\frac{1}{2}}$	f	$x^{-\frac{3}{4}}$

9	Write the following in the form ax^n .					
	a	$5\sqrt{x}$	b	$\frac{2}{x^3}$	c	$\frac{1}{3x^4}$
	d	$\frac{2}{\sqrt{x}}$	e	$\frac{4}{\sqrt[3]{x}}$	f	3

Extend

10 Write as sums of powers of *x*.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2 \left(x + \frac{1}{x} \right)$ **c** $x^{-4} \left(x^2 + \frac{1}{x^3} \right)$

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where *m* is the gradient and *c* is the *y*-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- When given the coordinates (*x*₁, *y*₁) and (*x*₂, *y*₂) of two points on a line the gradient is calculated using the

formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$m = -\frac{1}{2}$ and $c = 3$	1 A straight line has equation y = mx + c. Substitute the gradient
So $y = -\frac{1}{2}x + 3$	and y-intercept given in the question into this equation.
$\frac{1}{2}x + y - 3 = 0$	2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
x + 2y - 6 = 0	3 Multiply both sides by 2 to eliminate the denominator.

Example 2	Find the gradient ar	nd the y-intercept of the li	ine with the equation $3y -$	2x + 4 = 0.
-----------	----------------------	------------------------------	------------------------------	-------------

3y - 2x + 4 = 0	1 Make <i>y</i> the subject of the equation.
$ y = 2x - 4 y = \frac{2}{3}x - \frac{4}{3} $	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$ $13 = 15 + c$	 Substitute the coordinates x = 5 and y = 13 into the equation. Simplify and solve the equation.
c = -2 y = 3x - 2	4 Substitute $c = -2$ into the equation y = 3x + c

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2$, $x_2 = 8$, $y_1 = 4$ and $y_2 = 7$	1 Substitute the coordinates into the
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
2 1	the gradient of the line.
$y = \frac{1}{2}x + c$	2 Substitute the gradient into the equation of a straight line
1	y = mx + c.
$4 = \frac{1}{2} \times 2 + c$	3 Substitute the coordinates of either point into the equation.
<i>c</i> = 3	4 Simplify and solve the equation.
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation
	$y = \frac{1}{2}x + c$

Practice

1 Find the gradient and the *y*-intercept of the following equations.

a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	Rearrange the equations to the form $y = mx + c$

2 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	-7	

- 3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
 - **a** gradient $-\frac{1}{2}$, y-intercept -7 **b** gradient 2, y-intercept 0
 - **c** gradient $\frac{2}{3}$, y-intercept 4 **d** gradient -1.2, y-intercept -2
- 4 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.
 - a(4, 5), (10, 17)b(0, 6), (-4, 8)c(-1, -7), (5, 23)d(3, 10), (4, 7)

Extend

7 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation y = mx + c has gradient $-\frac{1}{2}$.

Examples

Example 1 Find the equation of the line parallel to y = 2x + 4 which passes through the point (4, 9).

y = 2x + 4 $m = 2$	1 As the lines are parallel they have the same gradient.
y = 2x + c	2 Substitute $m = 2$ into the equation of a straight line $y = mx + c$.
$9 = 2 \times 4 + c$	3 Substitute the coordinates into the equation $y = 2x + c$
9 = 8 + c c = 1	4 Simplify and solve the equation.
y = 2x + 1	5 Substitute $c = 1$ into the equation y = 2x + c

Example 2 Find the equation of the line perpendicular to y = 2x - 3 which passes through the point (-2, 5).

y = 2x - 3 m = 2 $-\frac{1}{m} = -\frac{1}{2}$	1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
$y = -\frac{1}{2}x + c$	2 Substitute $m = -\frac{1}{2}$ into $y = mx + c$.
$5 = -\frac{1}{2} \times (-2) + c$	3 Substitute the coordinates (-2, 5) into the equation $y = -\frac{1}{2}x + c$
5 = 1 + c $c = 4$	4 Simplify and solve the equation.
$y = -\frac{1}{2}x + 4$	5 Substitute $c = 4$ into $y = -\frac{1}{2}x + c$.

Example 3 A line passes through the points (0, 5) and (9, -1).Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$x_1 = 0, x_2 = 9, y_1 = 5 \text{ and } y_2 = -1$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 5}{9 - 0}$ $= \frac{-6}{2} = -\frac{2}{2}$	1	Substitute the coordinates into the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out the gradient of the line.
$-\frac{1}{m} = \frac{3}{2}$ $9 3$	2	As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
$y = \frac{5}{2}x + c$	3	Substitute the gradient into the equation $y = mx + c$.
Midpoint = $\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right) = \left(\frac{9}{2}, 2\right)$	4	Work out the coordinates of the midpoint of the line.
$2 = \frac{3}{2} \times \frac{9}{2} + c$ 19	5	Substitute the coordinates of the midpoint into the equation.
$c = -\frac{1}{4}$	6	Simplify and solve the equation.
$y = \frac{3}{2}x - \frac{19}{4}$	7	Substitute $c = -\frac{19}{4}$ into the
		equation $y = \frac{3}{2}x + c$.

Practice

- 1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
 - **a** y = 3x + 1 (3, 2)**b** y = 3 2x (1, 3)**c** 2x + 4y + 3 = 0 (6, -3)**d** 2y 3x + 2 = 0 (8, 20)
- 2 Find the equation of the line perpendicular to $y = \frac{1}{2}x 3$ which passes through the point (-5, 3).

Hint If $m = \frac{a}{b}$ then the negative reciprocal $-\frac{1}{m} = -\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.

a	y = 2x - 6 (4,0)	b	$y = -\frac{1}{3}x + \frac{1}{2}$ (2)	2, 13)
c	x - 4y - 4 = 0 (5, 15)	d	5y + 2x - 5 = 0	(6,7)

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.

a	(4, 3),	(-2, -9)	b	(0, 3),	(-10, 8)
---	---------	----------	---	---------	----------

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.

a	y = 2x + 3 $y = 2x - 7$	b	y = 3x $2x + y - 3 = 0$	c	y = 4x - 3 $4y + x = 2$
d	3x - y + 5 = 0 $x + 3y = 1$	e	2x + 5y - 1 = 0 $y = 2x + 7$	f	2x - y = 6 $6x - 3y + 3 = 0$

6 The straight line L_1 passes through the points A and B with coordinates (-4, 4) and (2, 1), respectively.

a Find the equation of \mathbf{L}_1 in the form ax + by + c = 0

The line L_2 is parallel to the line L_1 and passes through the point *C* with coordinates (-8, 3). **b** Find the equation of L_2 in the form ax + by + c = 0

The line L_3 is perpendicular to the line L_1 and passes through the origin.

c Find an equation of L_3

Trigonometry in right-angled triangles

A LEVEL LINKS Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - the side opposite the right angle is called the hypotenuse
 - the side opposite the angle θ is called the opposite
 - the side next to the angle θ is called the adjacent.

- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle θ , $\sin \theta = \frac{\text{opp}}{\text{hyp}}$
 - the ratio of the adjacent side to the hypotenuse is the cosine of angle θ , $\cos \theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle θ , $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30 °	45 °	60 °	90 °
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1Calculate the length of side x.Give your answer correct to 3 significant figures.

Example 3 Calculate the exact size of angle *x*.

Practice

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.1 The cosine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

Examples

Example 4 Work out the length of side *w*. Give your answer correct to 3 significant figures.

Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

7 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- 8 a Work out the length of WY. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.2 The sine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

75

в

Examples

Example 6 Work out the length of side *x*. Give your answer correct to 3 significant figures.

10 cm

369

а

sin A

b

sin B

 $\frac{1}{\sin 36^\circ}$ $\frac{1}{\sin 75^\circ}$

 $x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$

x = 6.09 cm

10

- 1 Always start by labelling the angles and sides.
 - 2 Write the sine rule to find the side.
 - **3** Substitute the values *a*, *b*, *A* and *B* into the formula.
 - 4 Rearrange to make *x* the subject.
 - **5** Round your answer to 3 significant figures and write the units in your answer.

Practice

a

с

9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

d

10 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- **11 a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs **Textbook:** Pure Year 1, 9.3 Areas of triangles

Key points

- *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.
- The area of the triangle is $\frac{1}{2}ab\sin C$.

Examples

Example 8 Find the area of the triangle.

Practice

12 Work out the area of each triangle. Give your answers correct to 3 significant figures.

13 The area of triangle XYZ is 13.3 cm². Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

Extend

- 14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
 - a

For each one, decide whether to use the cosine or sine rule.

b

2.5 cm

38 mm (20° 95 mm

15 The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures.

d

с

Task 2

The line *l* passes through the points A(3, 1) and B(4, -2).

Find an equation for *l*.

Question 2

A triangular lawn is modelled by the triangle ABC, shown in Figure 1. The length AB is to be 30m long.

Given that angle $BAC = 70^{\circ}$ and angle $ABC = 60^{\circ}$,

(a) calculate the area of the lawn to 3 significant figures.

(4)

(3)

(b) Why is your answer unlikely to be accurate to the nearest square metre?

(1)

Question 3

(i) Show that $x^2 - 8x + 17 > 0$ for all real values of x

(3)

(ii) "If I add 3 to a number and square the sum, the result is greater than the square of the original number."

State, giving a reason, if the above statement is always true, sometimes true or never true.

(2)

The line l_1 has equation 4y - 3x = 10

The line l_2 passes through the points (5, -1) and (-1, 8).

Determine, giving full reasons for your answer, whether lines l_1 and l_2 are parallel, perpendicular or neither.

(4)

Question 5

Figure 1

Figure 1 shows a sketch of the curve with equation y = g(x).

The curve has a single turning point, a minimum, at the point M(4, -1.5). The curve crosses the *x*-axis at two points, P(2, 0) and Q(7, 0).

The curve crosses the *y*-axis at a single point R(0, 5).

(a) State the coordinates of the turning point on the curve with equation y = 2g(x).

(1)

(b) State the largest root of the equation

$$g(x+1) = 0 \tag{1}$$

Figure 1 shows a rectangle ABCD.

The point *A* lies on the *y*-axis and the points *B* and *D* lie on the *x*-axis as shown in Figure 1. Given that the straight line through the points *A* and *B* has equation 5y + 2x = 10(a) show that the straight line through the points *A* and *D* has equation 2y - 5x = 4

(b) find the area of the rectangle ABCD.

(2)

(3)

(4)

Question 7

The function f is defined by

$$f(x) = \frac{12x}{3x+4} \qquad x \in \mathbb{R}, x \ge 0$$

(a) Find the range of f

(b) Find f^{-1} .

- (c) Show, for $x \in \mathbb{R}$, $x \ge 0$, that

$$ff(x) = \frac{9x}{3x+1}$$
(3)

The Venn diagram shows the probabilities for students at a college taking part in various sports.

A represents the event that a student takes part in Athletics.

T represents the event that a student takes part in Tennis.

C represents the event that a student takes part in Cricket.

p and q are probabilities.

The probability that a student selected at random takes part in Athletics or Tennis is 0.75

- (a) Find the value of p.
- (b) State, giving a reason, whether or not the events *A* and *T* are statistically independent. Show your working clearly.
 - (3)

(1)

(c) Find the probability that a student selected at random does not take part in Athletics or Cricket.

(1)

Alyona, Dawn and Sergei are sometimes late for school. The events A, D and S are as follows

- A Alyona is late for school
- D Dawn is late for school
- S Sergei is late for school

The Venn diagram below shows the three events A, D and S and the probabilities associated with each region of D. The constants p, q and r each represent probabilities associated with the three separate regions outside D.

(a) Write down 2 of the events A, D and S that are mutually exclusive. Give a reason for your answer.

The probability that Sergei is late for school is 0.2The events A and D are independent.

(b) Find	l the va	lue of r
----------	----------	----------

Dawn and Sergei's teacher believes that when Sergei is late for school, Dawn tends to be late for school.

- (c) State whether or not D and S are independent, giving a reason for your answer. (1)
- (d) Comment on the teacher's belief in the light of your answer to part (c). (1)

(4)

(1)

(i) Use a counter example to show that the following statement is false.

"
$$n^2 - n - 1$$
 is a prime number, for $3 \le n \le 10$." (2)

(ii) Prove that the following statement is always true.

"The difference between the cube and the square of an odd number is even."

For example $5^3 - 5^2 = 100$ is even.

(4)

(4)

Question 11

Figure 4

Figure 4 shows the plan view of the design for a swimming pool.

The shape of this pool *ABCDEA* consists of a rectangular section *ABDE* joined to a semicircular section *BCD* as shown in Figure 4.

Given that AE = 2x metres, ED = y metres and the area of the pool is 250 m^2 ,

(a) show that the perimeter, P metres, of the pool is given by

$$P = 2x + \frac{250}{x} + \frac{\pi x}{2}$$

(b) Explain why
$$0 < x < \sqrt{\frac{500}{\pi}}$$
 (2)