A level Maths

These tasks are very much designed to reinforce topics that you have seen at GCSE and will form part of your everyday skill-set in A level Maths.

If you get stuck, please email Mr Yeomans

tim.yeomans@northoxfordshire-academy.org

Task 1: Hand in on your 1st lesson in September (5 hours)

These preparatory worksheets have been created by Edexcel, the exam board we will be using in Maths. There are 7 sheets that will allow you to practice the topics that recur in A level Maths. They are the areas I would expect you to be able to recall straight away.

On each sheet there are examples to help you, practice questions and extensions.
The sheets cover:

1) Completing the square
2) Quadratic inequalities
3) Sketching quadratic graphs
4) Rules of indices
5) Straight line graphs
6) Parallel and perpendicular lines
7) Trigonometry

Task 2: Hand in on your 1st lesson in September (10 hours)

Having mastered the topics from GCSE Maths, I would like you to apply that knowledge to the questions in this task. These questions have been taken from A level papers but require only GCSE knowledge.

Extensions

1) Learn how to use the A level calculator using this PowerPoint:
https://www.drfrostmaths.com/getfile.php?fid=1520
2) The Statistics section of A level Maths makes use of the large data set. This is a spreadsheet with a lot of information in it. I recommend opening it and familiarising yourself with the type of information contained in it. You can download it here:
Large data set

Reading list

CGP A-Level Mathematics Complete Revision \& Practice (Exam Board: Edexcel)

I strongly recommend getting this calculator:

Casio Classwiz fx-991EX

- It costs around $£ 24.99$ from Amazon
- You can use the bursary to buy this in September
- Statistics questions are impossible to answer without it
- It solves simultaneous equations, quadratic equations, cubic equations and so much more!

Task 1

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$x^{2}+6 x-2$	$\mathbf{1}$ Write $x^{2}+b x+c$ in the form
$=(x+3)^{2}-9-2$	$\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$
$=(x+3)^{2}-11$	2 Simplify

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$$
\begin{aligned}
& 2 x^{2}-5 x+1 \\
& =2\left(x^{2}-\frac{5}{2} x\right)+1 \\
& =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

3 Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2

4 Simplify

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $\quad x^{2}+4 x+3$
b $\quad x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $\quad x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $\quad 3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $\quad 3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

Quadratic inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities - linear and quadratic (including graphical solutions)

Key points

- First replace the inequality sign by $=$ and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

Examples

Example 1 Find the set of values of x which satisfy $x^{2}+5 x+6>0$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=(x+3)(x+2)$

3 Identify on the graph where $x^{2}+5 x+6>0$, i.e. where $y>0$

4 Write down the values which satisfy the inequality $x^{2}+5 x+6>0$

Example 2 Find the set of values of x which satisfy $x^{2}-5 x \leq 0$

1 Solve the quadratic equation by factorising.

2 Sketch the graph of $y=x(x-5)$
3 Identify on the graph where $x^{2}-5 x \leq 0$, i.e. where $y \leq 0$

4 Write down the values which satisfy the inequality $x^{2}-5 x \leq 0$

Example 3 Find the set of values of x which satisfy $-x^{2}-3 x+10 \geq 0$

Practice

1 Find the set of values of x for which $(x+7)(x-4) \leq 0$

2 Find the set of values of x for which $x^{2}-4 x-12 \geq 0$

3 Find the set of values of x for which $2 x^{2}-7 x+3<0$

4 Find the set of values of x for which $4 x^{2}+4 x-3>0$

5 Find the set of values of x for which $12+x-x^{2} \geq 0$

Extend

Find the set of values which satisfy the following inequalities.
$6 \quad x^{2}+x \leq 6$
$7 x(2 x-9)<-10$
$8 \quad 6 x^{2} \geq 15+x$

Sketching quadratic graphs

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- The graph of the quadratic function $y=a x^{2}+b x+c$, where $a \neq 0$, is a curve called a parabola.
- Parabolas have a line of symmetry and
 a shape as shown.
- To sketch the graph of a function, find the points where the graph intersects the axes.
- To find where the curve intersects the y-axis substitute $x=0$ into the function.
- To find where the curve intersects the x-axis substitute $y=0$ into the function.
- At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at these points are horizontal.
- To find the coordinates of the maximum or minimum point (turning points) of a quadratic curve (parabola) you can use the completed square form of the function.

Examples

Example 1 Sketch the graph of $y=x^{2}$.

The graph of $y=x^{2}$ is a parabola.

When $x=0, y=0$.
$a=1$ which is greater than zero, so the graph has the shape:

Example 2 Sketch the graph of $y=x^{2}-x-6$.

When $x=0, y=0^{2}-0-6=-6$
So the graph intersects the y-axis at ($0,-6$)
When $y=0, x^{2}-x-6=0$
$(x+2)(x-3)=0$
$x=-2$ or $x=3$

So,
the graph intersects the x-axis at $(-2,0)$ and (3,0)

1 Find where the graph intersects the y-axis by substituting $x=0$.

2 Find where the graph intersects the x-axis by substituting $y=0$.
3 Solve the equation by factorising.
4 Solve $(x+2)=0$ and $(x-3)=0$.
$5 a=1$ which is greater than zero, so the graph has the shape:

$x^{2}-x-6=\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-6$	6To find the turning point, complete the square.
$=\left(x-\frac{1}{2}\right)^{2}-\frac{25}{4}$	When $\left(x-\frac{1}{2}\right)^{2}=0, x=\frac{1}{2}$ and $y=-\frac{25}{4}$, so the turning point is at the The turning point is the minimum value for this expression and occurs when the term in the bracket is equal to zero.

Practice

1 Sketch the graph of $y=-x^{2}$.

2 Sketch each graph, labelling where the curve crosses the axes.
a $y=(x+2)(x-1)$
b $\quad y=x(x-3)$
c $\quad y=(x+1)(x+5)$

3 Sketch each graph, labelling where the curve crosses the axes.
a $y=x^{2}-x-6$
b $y=x^{2}-5 x+4$
c $y=x^{2}-4$
d $y=x^{2}+4 x$
e $y=9-x^{2}$
f $y=x^{2}+2 x-3$

4 Sketch the graph of $y=2 x^{2}+5 x-3$, labelling where the curve crosses the axes.

Extend

5 Sketch each graph. Label where the curve crosses the axes and write down the coordinates of the turning point.
a $y=x^{2}-5 x+6$
b $\quad y=-x^{2}+7 x-12$
c $\quad y=-x^{2}+4 x$

6 Sketch the graph of $y=x^{2}+2 x+1$. Label where the curve crosses the axes and write down the equation of the line of symmetry.

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $\quad a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\quad\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $\quad a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10°

$$
10^{0}=1
$$

Any value raised to the power of zero is equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$ $=$ $=3$	Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{2}{3}}$

$$
\begin{array}{rl|l}
27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} & 1 \\
& =3^{2} & \\
& =9 & \\
& \text { Use the rule } a^{\frac{m}{n}}=(\sqrt[n]{27}=3
\end{array}
$$

Example 4 Evaluate 4^{-2}

$$
\begin{array}{rl|l}
4^{-2} & =\frac{1}{4^{2}} & \mathbf{1} \quad \text { Use the rule } a^{-m}=\frac{1}{a^{m}} \\
& =\frac{1}{16} & \mathbf{2} \text { Use } 4^{2}=16
\end{array}
$$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$$
\frac{6 x^{5}}{2 x^{2}}=3 x^{3}
$$

$6 \div 2=3$ and use the rule $\frac{a^{m}}{a^{n}}=a^{m-n}$ to give $\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}$

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$\frac{x^{3} \times x^{5}}{x^{4}}$ $=\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}}$ $=x^{8-4}=x^{4}$	$\mathbf{1} \quad$ Use the rule $a^{m} \times a^{n}=a^{m+n}$

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$\frac{4}{\sqrt{x}}$	$=\frac{4}{x^{\frac{1}{2}}}$			
	$=4 x^{-\frac{1}{2}}$	\quad	$\mathbf{1}$	Use the rule $a^{\frac{1}{n}}=\sqrt[n]{a}$
:---	:---			
$\mathbf{2}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$			

Practice

1 Evaluate.
a 14^{0}
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $\quad 125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a $\quad 5^{-2}$
b 4^{-3}
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\quad \frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!
Remember that
any value raised to
the power of zero
is 1 . This is the
rule $a^{0}=1$.

6 Evaluate.
a $4^{-\frac{1}{2}}$
b $\quad 27^{-\frac{2}{3}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
c $x^{\frac{1}{5}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation $y=m x+c$, where m is the gradient and c is the y-intercept (where $x=0$).
- The equation of a straight line can be written in the form $a x+b y+c=0$, where a, b and c are integers.
- When given the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of two points on a line the gradient is calculated using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3 .
Write the equation of the line in the form $a x+b y+c=0$.

$$
\begin{aligned}
& m=-\frac{1}{2} \text { and } c=3 \\
& \text { So } y=-\frac{1}{2} x+3 \\
& \frac{1}{2} x+y-3=0 \\
& x+2 y-6=0
\end{aligned}
$$

1 A straight line has equation $y=m x+c$. Substitute the gradient and y-intercept given in the question into this equation.
2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the y-intercept of the line with the equation $3 y-2 x+4=0$.

$$
\begin{aligned}
& 3 y-2 x+4=0 \\
& 3 y=2 x-4 \\
& y=\frac{2}{3} x-\frac{4}{3} \\
& \text { Gradient }=m=\frac{2}{3} \\
& y \text {-intercept }=c=-\frac{4}{3}
\end{aligned}
$$

1 Make y the subject of the equation.
2 Divide all the terms by three to get the equation in the form $y=\ldots$

3 In the form $y=m x+c$, the gradient is m and the y-intercept is c.

Example 3 Find the equation of the line which passes through the point $(5,13)$ and has gradient 3.

$$
\begin{aligned}
& m=3 \\
& y=3 x+c \\
& 13=3 \times 5+c \\
& 13=15+c \\
& c=-2 \\
& y=3 x-2
\end{aligned}
$$

1 Substitute the gradient given in the question into the equation of a straight line $y=m x+c$.
2 Substitute the coordinates $x=5$ and $y=13$ into the equation.
3 Simplify and solve the equation.

4 Substitute $c=-2$ into the equation $y=3 x+c$

Example 4 Find the equation of the line passing through the points with coordinates $(2,4)$ and $(8,7)$.

$$
\begin{aligned}
& x_{1}=2, x_{2}=8, y_{1}=4 \text { and } y_{2}=7 \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{8-2}=\frac{3}{6}=\frac{1}{2} \\
& y=\frac{1}{2} x+c \\
& 4=\frac{1}{2} \times 2+c \\
& c=3 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

1 Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out the gradient of the line.
2 Substitute the gradient into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates of either point into the equation.
4 Simplify and solve the equation.
5 Substitute $c=3$ into the equation $y=\frac{1}{2} x+c$

Practice

1 Find the gradient and the y-intercept of the following equations.
a $y=3 x+5$
b $\quad y=-\frac{1}{2} x-7$
c $2 y=4 x-3$
d $\quad x+y=5$
e $\quad 2 x-3 y-7=0$
f $\quad 5 x+y-4=0$

Hint

Rearrange the equations
to the form $y=m x+c$

2 Copy and complete the table, giving the equation of the line in the form $y=m x+c$.

Gradient	\boldsymbol{y}-intercept	Equation of the line
5	0	
-3	2	
4	-7	

3 Find, in the form $a x+b y+c=0$ where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.
a gradient $-\frac{1}{2}, y$-intercept -7
b gradient 2, y-intercept 0
c gradient $\frac{2}{3}, y$-intercept 4
d gradient $-1.2, y$-intercept -2

4 Write an equation for the line which passes though the point $(2,5)$ and has gradient 4.

5 Write an equation for the line which passes through the point $(6,3)$ and has gradient $-\frac{2}{3}$

6 Write an equation for the line passing through each of the following pairs of points.
a $(4,5),(10,17)$
b $(0,6),(-4,8)$
c $(-1,-7),(5,23)$
d $(3,10),(4,7)$

Extend

7 The equation of a line is $2 y+3 x-6=0$. Write as much information as possible about this line.

Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient.
- A line perpendicular to the line with equation $y=m x+c$ has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$$
\begin{aligned}
& y=2 x+4 \\
& m=2 \\
& y=2 x+c \\
& 9=2 \times 4+c \\
& 9=8+c \\
& c=1 \\
& y=2 x+1
\end{aligned}
$$

1 As the lines are parallel they have the same gradient.
2 Substitute $m=2$ into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates into the equation $y=2 x+c$
4 Simplify and solve the equation.
5 Substitute $c=1$ into the equation $y=2 x+c$

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$$
\begin{aligned}
& y=2 x-3 \\
& m=2 \\
& -\frac{1}{m}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c \\
& 5=-\frac{1}{2} \times(-2)+c \\
& 5=1+c \\
& c=4 \\
& y=-\frac{1}{2} x+4
\end{aligned}
$$

1 As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$.
2 Substitute $m=-\frac{1}{2}$ into $y=m x+c$.
3 Substitute the coordinates $(-2,5)$ into the equation $y=-\frac{1}{2} x+c$
4 Simplify and solve the equation.
5 Substitute $c=4$ into $y=-\frac{1}{2} x+c$.

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$x_{1}=0, x_{2}=9, y_{1}=5$ and $y_{2}=-1$	
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0}$	
$=\frac{-6}{9}=-\frac{2}{3}$	$\mathbf{1}$Substitute the coordinates into the equation $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ to work out $-\frac{1}{m}=\frac{3}{2}$ $y=\frac{3}{2} x+c$ the gradient of the line.
Midpoint $=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right)$ As the lines are perpendicular, the gradient of the perpendicular line is $-\frac{1}{m}$. $2=\frac{3}{2} \times \frac{9}{2}+c$ 3ubstitute the gradient into the equation $y=m x+c$. $c=-\frac{19}{4}$ Work out the coordinates of the midpoint of the line. $y=\frac{5}{2} x-\frac{19}{4}$ Substitute the coordinates of the midpoint into the equation. $\mathbf{6}$ Simplify and solve the equation. $\mathbf{7}$ Substitute $c=-\frac{19}{4}$ into the equation $y=\frac{3}{2} x+c$.	

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $\quad y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0 \quad(6,-3)$
d $2 y-3 x+2=0$

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=\frac{a}{b}$ then the negative reciprocal $-\frac{1}{m}=-\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $y=2 x-6 \quad(4,0)$
b $\quad y=-\frac{1}{3} x+\frac{1}{2}$
c $\quad x-4 y-4=0$
$(5,15)$
d $\quad 5 y+2 x-5=0$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $\quad(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$
b $y=3 x$
c $\quad y=4 x-3$
$y=2 x-7$
$2 x+y-3=0$
$4 y+x=2$
d $3 x-y+5=0$
$x+3 y=1$
e $\quad 2 x+5 y-1=0$
$y=2 x+7$
f $\quad 2 x-y=6$
$6 x-3 y+3=0$

6 The straight line $\mathbf{L}_{\mathbf{1}}$ passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of $\mathbf{L}_{\mathbf{1}}$ in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{2}}$ is parallel to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the point C with coordinates $(-8,3)$.
b Find the equation of $\mathbf{L}_{\mathbf{2}}$ in the form $a x+b y+c=0$

The line $\mathbf{L}_{\mathbf{3}}$ is perpendicular to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the origin.
c Find an equation of \mathbf{L}_{3}

A LEVEL LINKS

Scheme of work: 4 a . Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\text { opp }}{\text { hyp }}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\text { opp }}{\text { adj }}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

1 Always start by labelling the sides.

2 You are given the adjacent and the hypotenuse so use the cosine ratio.

3 Substitute the sides and angle into the cosine ratio.

4 Rearrange to make x the subject.
5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle x.
Give your answer correct to 3 significant figures.

1 Always start by labelling the sides.

2 You are given the opposite and the adjacent so use the tangent ratio.
3 Substitute the sides and angle into the tangent ratio.
4 Use $\tan ^{-1}$ to find the angle.
5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

c

e

b

d

f

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

b

c

3 Work out the height of the isosceles triangle.
Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

c

b

d

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B. c is the side opposite angle C .

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ}$
$w^{2}=33.80404051 \ldots$
$w=\sqrt{33.80404051}$
$w=5.81 \mathrm{~cm}$

1 Always start by labelling the angles and sides.

2 Write the cosine rule to find the side.

3 Substitute the values a, b and A into the formula.
4 Use a calculator to find w^{2} and then w.
5 Round your final answer to 3 significant figures and write the units in your answer.

Example 5 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

7 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

8 a Work out the length of WY. Give your answer correct to 3 significant figures.
b Work out the size of angle WXY.
Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4 a . Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B. c is the side opposite angle C .

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side x.
Give your answer correct to 3 significant figures.

	1 Always start by labelling the angles and sides.
$\frac{a}{\sin A}=\frac{b}{\sin B}$	2 Write the sine rule to find the side.
$\frac{x}{\sin 36^{\circ}}=\frac{10}{\sin 75^{\circ}}$	3 Substitute the values a, b, A and B into the formula.
$\begin{aligned} & x=\frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}} \\ & x=6.09 \mathrm{~cm} \end{aligned}$	4 Rearrange to make x the subject. 5 Round your answer to 3 significant figures and write the units in your answer.

Example 7 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values a, b, A and B into the formula.

4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d

10 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS.
Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4 a . Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B.
c is the side opposite angle C .
- The area of the triangle is $\frac{1}{2} a b \sin C$.

Examples

Example 8 Find the area of the triangle.

	1 Always start by labelling the sides and angles of the triangle.
$\text { Area }=\frac{1}{2} a b \sin C$	2 State the formula for the area of a triangle.
$\text { Area }=\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$	3 Substitute the values of a, b and C into the formula for the area of a triangle.
Area $=19.805361 .$.	4 Use a calculator to find the area.
Area $=19.8 \mathrm{~cm}^{2}$	5 Round your answer to 3 significant figures and write the units in your answer.

Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

b

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$. Work out the length of XZ.

Hint:

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side.
Give your answers correct to 3 significant figures.
a

b

c

d

15 The area of triangle ABC is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.

Task 2

Question 1

The line l passes through the points $A(3,1)$ and $B(4,-2)$.
Find an equation for l.

Question 2

Figure 1
A triangular lawn is modelled by the triangle $A B C$, shown in Figure 1. The length $A B$ is to be 30 m long.

Given that angle $B A C=70^{\circ}$ and angle $A B C=60^{\circ}$,
(a) calculate the area of the lawn to 3 significant figures.
(b) Why is your answer unlikely to be accurate to the nearest square metre?

Question 3

(i) Show that $x^{2}-8 x+17>0$ for all real values of x
(ii) "If I add 3 to a number and square the sum, the result is greater than the square of the original number."

State, giving a reason, if the above statement is always true, sometimes true or never true.

Question 4

The line l_{1} has equation $4 y-3 x=10$
The line l_{2} passes through the points $(5,-1)$ and $(-1,8)$.
Determine, giving full reasons for your answer, whether lines l_{1} and l_{2} are parallel, perpendicular or neither.

Question 5

Figure 1

Figure 1 shows a sketch of the curve with equation $y=\mathrm{g}(x)$.
The curve has a single turning point, a minimum, at the point $M(4,-1.5)$.
The curve crosses the x-axis at two points, $P(2,0)$ and $Q(7,0)$.
The curve crosses the y-axis at a single point $R(0,5)$.
(a) State the coordinates of the turning point on the curve with equation $y=2 \mathrm{~g}(x)$.
(b) State the largest root of the equation

$$
\begin{equation*}
\mathrm{g}(x+1)=0 \tag{1}
\end{equation*}
$$

Question 6

Figure 1

Figure 1 shows a rectangle $A B C D$.
The point A lies on the y-axis and the points B and D lie on the x-axis as shown in Figure 1.
Given that the straight line through the points A and B has equation $5 y+2 x=10$
(a) show that the straight line through the points A and D has equation $2 y-5 x=4$
(b) find the area of the rectangle $A B C D$.

Question 7

The function f is defined by

$$
\mathrm{f}(x)=\frac{12 x}{3 x+4} \quad x \in \mathbb{R}, x \geqslant 0
$$

(b) Find f^{-1}.
(c) Show, for $x \in \mathbb{R}, x \geqslant 0$, that

$$
\begin{equation*}
\mathrm{ff}(x)=\frac{9 x}{3 x+1} \tag{3}
\end{equation*}
$$

Question 8

The Venn diagram shows the probabilities for students at a college taking part in various sports.
A represents the event that a student takes part in Athletics.
T represents the event that a student takes part in Tennis.
C represents the event that a student takes part in Cricket.
p and q are probabilities.

The probability that a student selected at random takes part in Athletics or Tennis is 0.75
(a) Find the value of p.
(b) State, giving a reason, whether or not the events A and T are statistically independent. Show your working clearly.
(c) Find the probability that a student selected at random does not take part in Athletics or Cricket.

Question 9

Alyona, Dawn and Sergei are sometimes late for school.
The events A, D and S are as follows
A Alyona is late for school
D Dawn is late for school
S Sergei is late for school
The Venn diagram below shows the three events A, D and S and the probabilities associated with each region of D. The constants p, q and r each represent probabilities associated with the three separate regions outside D.

(a) Write down 2 of the events A, D and S that are mutually exclusive. Give a reason for your answer.

The probability that Sergei is late for school is 0.2
The events A and D are independent.
(b) Find the value of r

Dawn and Sergei's teacher believes that when Sergei is late for school, Dawn tends to be late for school.
(c) State whether or not D and S are independent, giving a reason for your answer.
(d) Comment on the teacher's belief in the light of your answer to part (c).

Question 10

(i) Use a counter example to show that the following statement is false.

$$
\begin{equation*}
\text { " } n^{2}-n-1 \text { is a prime number, for } 3 \leqslant n \leqslant 10 \text {." } \tag{2}
\end{equation*}
$$

(ii) Prove that the following statement is always true.
"The difference between the cube and the square of an odd number is even."
For example $5^{3}-5^{2}=100$ is even.

Question 11

Figure 4
Figure 4 shows the plan view of the design for a swimming pool.
The shape of this pool $A B C D E A$ consists of a rectangular section $A B D E$ joined to a semicircular section $B C D$ as shown in Figure 4.

Given that $A E=2 x$ metres, $E D=y$ metres and the area of the pool is $250 \mathrm{~m}^{2}$,
(a) show that the perimeter, P metres, of the pool is given by

$$
\begin{equation*}
P=2 x+\frac{250}{x}+\frac{\pi x}{2} \tag{4}
\end{equation*}
$$

(b) Explain why $0<x<\sqrt{\frac{500}{\pi}}$

